

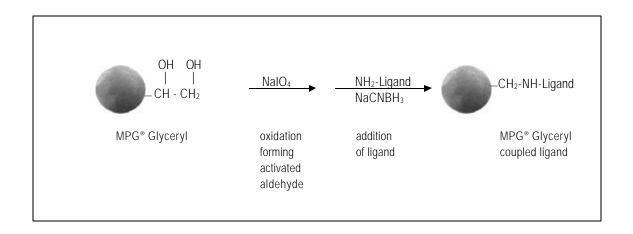
Products for Biotechnology

With Magnetic Porous Glass (MPG®)

 Protocol No.:
 2.105

 Product:
 MPG* Glyceryl (30 mg/ml, 1.2 - 1.8 × 10⁸ particles/ml)

 Procedure:
 Covalent Attachment of Biomolecules with Alkylamine Groups.


 Storage:
 Ambient Temperature

PRODUCT NUMBER

MGLY0502

MGLY0510

DESCRIPTION MPG[®] Glyceryl, 5 µm, 50 nm (500 Å) pore diameter **VOLUME** 2 ml (60 mg) 10 ml (300 mg)

General Procedure

Materials: (Based on 10 mg MPG[®] Glyceryl, suspended in water)

Protein or Biomolecule of Interest Sodium Phosphate, Monobasic (NaH₂PO₄) Sodium Phosphate, Dibasic, Heptahydrate (Na₂HPO₄) Sodium Azide (NaN₃) Sodium Chloride (NaCl) 2N Hydrochloric Acid (HCl) Glycine (H₂NCH₂COOH) Deionized Water (dH₂O)

Solution

Coupling Buffer (10 mM Phosphate, pH 7.5)

Activation Solution (150 mM Sodium Periodate)

Sodium Periodate (NaIO₄) 1.5 ml Microcentrifuge Tubes Magnetic Particle Separator, Prod. No. MPS0301 or MPS0001 Low Speed Rotator Vortex Mixer Pipettes and Pipette Tips

Sodium Cyanoborohydride (NaBH₃CN)

Bovine Serum Albumin (BSA)

Preparation

Dissolve 19.2 mg NaH₂PO₄ and 225.2 mg Na₂HPO₄ \cdot 7H₂O in 80 ml dH₂O. Adjust to pH 7.5 with 2 N HCl, if necessary, and bring volume to 100 ml with dH₂O.

Dissolve 32 mg NaIO₄ in 1 ml dH₂O.

Solution (continued) 0.75% Glycine Solution	Preparation(continued) Dissolve 7.5 mg Glycine in 1 ml of Coupling Buffer.
1% Sodium Cyanoborohydride Solution (Fresh)	Dissolve 10 mg NaBH ₃ CN in 1 ml of Coupling Buffer.
Washing Buffer (10 mM Phosphate, pH 7.5, 1.0 M NaCl)	Dissolve 584.7 mg NaCI in 5 ml of Coupling Buffer. Bring to 10 ml with Coupling Buffer.
Storage Buffer (10 mM Phosphate, pH 7.5, 150 mM NaCl, 0.1% BSA, 0.02% NaN₃)	Dissolve 87.7 mg NaCl, 10 mg BSA and 2 mg NaN $_3$ in 8 ml Coupling Buffer. Bring to 10 ml with Coupling Buffer.

Activation of MPG® Glyceryl

- 1. Adjust the concentration of MPG[®] Glyceryl to 10 mg/ml. Transfer 1 ml to a 1.5 ml microcentrifuge tube. Magnetically separate the MPG[®] Glyceryl from the solution by placing the tube in a Magnetic Particle Separator for at least 30 seconds. Remove the supernatant by aspiration while the tube remains in the particle separator.
- 2. Remove the tube from the particle separator. Add 1 ml of Coupling Buffer and mix well. Magnetically separate the MPG[®] Glyceryl from the solution and aspirate the supernatant.
- 3. Add 1 ml of Activation Solution to the MPG[®] Glyceryl and mix well. Place the tube in a low speed rotator and rotate 1½ hours at room temperature. Magnetically separate and aspirate the supernatant.
- 4. Add 1 ml of Coupling Buffer to the activated MPG[®] Glyceryl and mix well. Magnetically separate and remove the supernatant. Repeat this step four more times.

Coupling of Protein to Activated MPG[®] Glyceryl

 Dissolve 2.5 mg of Protein (for Antibody use 1 mg) or Biomolecule of Interest in 1 ml of Coupling Buffer.* Add this mixture and 50 µl of the 1% Sodium Cyanoborohydride Solution to the activated MPG[®] Glyceryl. Mix well and rotate 3 hours at room temperature. Magnetically separate and aspirate the supernatant.

*THE CONCENTRATION OF THE SPECIFIC BIOMOLECULE SHOULD BE TITRATED TO ACHIEVE OPTIMAL COUPLING TO THE PARTICLE SURFACE.

- 2. Add 1 ml of 0.75% Glycine Solution and 50 µl of 1% Sodium Cyanoborohydride Solution, mix well and rotate 1 hour at room temperature. Magnetically separate and aspirate the supernatant.
- 3. Add 1 ml of Washing Buffer and mix well. Magnetically separate and remove the supernatant. Repeat this step four more times. The protein or biomolecule-bound MPG[®] Glyceryl is ready to use.
- 4. For storage, add 1 ml Storage Buffer to the protein or biomolecule-bound MPG[®] Glyceryl and mix well. Magnetically separate and aspirate the supernatant. Resuspend the protein σ biomolecule-bound MPG[®] Glyceryl particles in 1 ml Storage Buffer and store at 4°C.

FOR TECHNICAL SERVICE ON THIS OR ANY OTHER PureBiotech PRODUCT CALL 866-252-7771 or e-mail us at info@purebiotechllc.com.

For in vitro research use only.

MPG[®] is a registered trademark of Millipore Corporation. Magnetic Porous Glass and certain applications in which it is used are covered by U.S. Patent 5,601,979; 5,610,274 and 5,734,020 owned by Millipore Corporation and licensed by PureBiotech, LLC.